防火网
本站  
設為首頁 加入收藏 網站地圖  中文版 繁体 English
 
測試服務: 機車材料防火測試 | 建築產品防火測試 | 船舶防火測試 | 飛機防火測試 | 耐火測試 | 噴射火測試 | 其他測試
   
用戶名:
密碼:
驗證碼:
   
 
主要阻燃防火認證標準
火車船舶汽車建材
 
相關測試方法 更多>>
EN ISO 9239-1:2010地
EN ISO 1182:2010
NF P 92-501
NF P 92-507
法标F级测试
法标I级测试
法国M级测试
EN ISO 1182
EN ISO 9239-1
EN 13501-1
 
首頁   美国   ASTM E2047光电阵列湿绝缘完整性试验的标准试验方法
 

ASTM E2047光电阵列湿绝缘完整性试验的标准试验方法

ASTM E2047  Standard Test Method for Wet Insulation Integrity Testing of Photovoltaic Arrays
ASTM E2047光电阵列湿绝缘完整性试验的标准试验方法

The design of a PV module or system intended to provide safe conversion of the sun's radiant energy into useful electricity must take into consideration the possibility of hazard should the user come into contact with the electrical potential of the array. In addition, the insulation system provides a barrier to electrochemical corrosion, and insulation flaws can result in increased corrosion and reliability problems. This test method describes a procedure for verifying that the design and construction of the array provides adequate electrical isolation through normal installation and use. At no location on the array should the PV-generated electrical potential be accessible, with the obvious exception of the output leads. The isolation is necessary to provide for safe and reliable installation, use, and service of the PV system.
This test method describes a procedure for determining the ability of the array to provide protection from electrical hazards. Its primary use is to find insulation flaws that could be dangerous to persons who may come into contact with the array. Corrective action taken to address such flaws is beyond the scope of this test method.
This procedure may be specified as part of a series of acceptance tests involving performance measurements and demonstration of functional requirements. Large arrays can be tested in smaller segments. The size of the array segment to be tested (called “circuit under test” in this test method) is usually selected at a convenient break point and sized such that the expected resistance or current reading is within the middle third of the meter's range.
Insulation leakage resistance and insulation leakage current leakage are strong functions of array dimensions, ambient relative humidity, absorbed water vapor, and other factors. For this reason, it is the responsibility of the user of this test method to specify the minimum acceptable leakage resistance for this test.
Even though a numerical quantity is specified, actual results are often pass-fail in that when a flaw is found, the leakage current changes from almost nothing to the full scale value on the meter.
The user of this test method must specify the option used for connection to the array during the test. The short-circuited option requires a shorting device with leads to connect the positive and negative legs of the circuit under test. For larger systems, where the shorting device may have to be rated for high current and voltage levels, the open-circuited option may be preferred. The open-circuited option requires the user to correct readings to account for the PV-generated voltage, and the procedure for making such corrections is beyond the scope of this test method. The short-circuited option may be easier for small systems where the voltage and current levels are low and the distance between the plus and minus leads of the circuit under test are small. The short-circuited option minimizes the chance of exposing array components to voltage levels above those for which they are rated.

1. Scope
1.1 This test method covers a procedure to determine the insulation resistance of a photovoltaic (PV) array (or its component strings), that is, the electrical resistance between the array's internal electrical components and is exposed, electrically conductive, non-current carrying parts and surfaces of the array.
1.2 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method.
1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
ASTM Standards
ASTM E772 Terminology Relating to Solar Energy Conversion
ASTM E1328 Terminology Relating to Photovoltaic Solar Energy Conversion
ASTM E1462 Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules
Index Terms
electrical testing; insulation integrity; insulation resistance; photovoltaics; solar energy; Electrical performance--solar devices; Insulation resistance; Photovoltaic (PV) power systems; Solar energy; Wet insulation integrity;

更多防火阻燃测试认证,请咨询中国防火网
电话:400-666-7290
网址:www.firete.com
邮箱:info@firete.com

...


 來源:防火網 發布時間:11/13/2013 點擊次數:1241

 上一條: ASTM E2021尘埃层热表面燃烧温度标准试验方法

 下一條: ASTM E2050用燃烧红外线吸收法测定压型粉中碳总含量的标准试验方法
 
 
網站首頁 | 測試服務 | 各國標準 | 新聞資訊 | 防火材料 | 會展信息 | 認證服務 | 在線咨詢 | 聯系我們
Copyright © 2009-2023 Firete.com All Right Reserved 蘇公網安備 32010502010088號
服務熱線:+86 25-86583475   備案號:苏ICP备10201999号-1 DIN5510-2 DIN5510 防火網博客